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ABSTRACT: Two spaceborne radars currently in orbit enable the sampling of snowfall near the surface and throughout
the atmospheric column, namely, CloudSat’s Cloud Profiling Radar (CPR) and the Global Precipitation Measurement mis-
sion’s Dual-Frequency Precipitation Radar (GPM-DPR). In this paper, a direct comparison of the CPR’s 2C-SNOW-
PROFILE (2CSP), the operational GPM-DPR algorithm (2ADPR) and a neural network (NN) retrieval applied to the
GPM-DPR data is performed using coincident observations between both radars. Examination of over 3500 profiles within
moderate to strong precipitation (Ka band $ 18 dBZ) show that the NN retrieval provides the closest retrieval of liquid
equivalent precipitation rate R immediately above the melting level to the R retrieved just below the melting layer, agree-
ing within 5%. Meanwhile, 2CSP retrieves a maximum value of R at2158C, decreases by 35% just above the melting layer,
and is about 50% smaller than the GPM-DPR retrieved R below the melting layer. CPR-measured reflectivity shows me-
dian reduction of 2–3 dB from 2158 to 22.58C, likely the reason for the 2CSP retrieval reduction of R. Two case studies
from NASA field campaigns [i.e., Olympic Mountains Experiment (OLYMPEX) and Investigation of Microphysics and
Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS)] provide analogs to the type of precipitating sys-
tems found in the comparison between retrieval products. For the snowfall events that GPM-DPR can observe, this work
suggests that the 2CSP retrieval is likely underestimating the unattenuated reflectivity, resulting in a potential negative, or
low, bias in R. Future work should investigate how frequently the underestimated reflectivity profiles occur within the CPR
record and quantify its potential effects on global snowfall accumulation estimation.
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1. Introduction

Most of the world’s precipitation falls as rain, but more
than half can be related to ice processes found aloft (Field
and Heymsfield 2015; Heymsfield et al. 2020). Thus, any at-
tempt to fully quantify the hydrological cycle must include
solid-phase hydrometeor processes and measurements. Fur-
thermore, the amount of snow that falls to the surface is vital
in mountainous regions where humanity relies on the melted
runoff as their main freshwater resource (e.g., Viviroli et al.
2003). One method of quantifying characteristics of solid-
phase hydrometeors is the use of radar. Currently there are
two satellites in orbit carrying meteorological radars capable

of quantifying global precipitation characteristics, CloudSat
and the Global Precipitation Measurement (GPM) mission
Core Observatory.

CloudSat was launched in 2006 carrying the Cloud Profiling
Radar (CPR), a nonscanning 94-GHz radar in a 988 sun-
synchronous orbit (Stephens et al. 2002; Tanelli et al. 2008).
The operating frequency, high sensitivity, and relatively small
instantaneous field of view (IFOV) allows successful detection
of most clouds found in the troposphere. Since 2006, CPR has
been used for numerous global snowfall studies (Liu 2009;
Kulie and Bennartz 2009; Palerme et al. 2014; Kulie et al. 2016;
Palerme et al. 2017; Milani et al. 2018; Kulie and Milani 2018;
Kulie et al. 2020), and after evaluation against several ground-
based methods (e.g., Cao et al. 2014; Norin et al. 2015; Chen
et al. 2016; Souverijns et al. 2018; Matrosov 2019), CPR has
become commonly used as a global snowfall reference (e.g.,
Palerme et al. 2017; Milani et al. 2018; Skofronick-Jackson et al.
2019; Cabaj et al. 2020; Edel et al. 2020).

The GPM Core Observatory was launched in 2014 into a
658 non-sun-synchronous orbit carrying the scanning Dual-
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Frequency Precipitation Radar (DPR) operating at 13.5 and
35.5 GHz (Hou et al. 2014). Contrary to CloudSat, GPM-
DPR has a relatively large IFOV and a more limited sensitiv-
ity, thus GPM-DPR is generally more useful for moderate to
intense precipitation. Despite GPM-DPR’s limitations, the ra-
dar has been used for global snowfall studies (Adhikari et al.
2018; Adhikari and Liu 2019).

The comparison of CPR, GPM-DPR, and their operational
retrieval products, namely, the 2C-SNOW-PROFILE from
CloudSat (Wood and L’Ecuyer 2018, 2021) and the 2ADPR
from GPM-DPR (Iguchi et al. 2018; Seto et al. 2021), shows
that the 2ADPR near-surface snowfall retrieval product is
negatively (hereinafter “low”) biased (Casella et al. 2017;
Tang et al. 2017; Skofronick-Jackson et al. 2019). Casella et al.
(2017) used a coincident database of CPR and GPM-DPR ob-
servations (Turk 2016; Turk et al. 2021) and found that more
than 90% of near-surface snowfall events by number are
missed by GPM-DPR, attributing this to GPM-DPR’s lack of
sensitivity. However, Casella et al. (2017) state that while
GPM-DPR is missing a large fraction of events by number,
the fraction of the snowfall accumulation captured by GPM-
DPR is estimated to be around 30% of the total global snow-
fall accumulation. Skofronick-Jackson et al. (2019) compared
three years of CPR and GPM-DPR measurements statisti-
cally, accounting for hardware, retrieval algorithm, and oper-
ating frequency differences. After careful quality control, it
was found that on a global average GPM-DPR near-surface
snowfall accumulation was about 43% lower than CPR, but
the disparity can be larger at specific locations by up to
800 mm yr21 (Skofronick-Jackson et al. 2019). Motivated by
the work of Casella et al. (2017) and Skofronick-Jackson et al.
(2019), Chase et al. (2020) investigated the microphysical as-
sumptions within the 2ADPR retrieval algorithm and found
that the assumed empirical parameterization between the liq-
uid equivalent mass flux R and the liquid equivalent mass-
weighted mean diameter Dm does not characterize surface
snowfall observations well and contributes to the low bias
reported in Skofronick-Jackson et al. (2019). Following the
work of Chase et al. (2020), Chase et al. (2021) developed an
alternative dual-frequency retrieval for GPM-DPR that
shows initially good performance against in situ observa-
tions, with a median bias of 13%, 120%, and 10% for Dm,
the liquid equivalent normalized intercept parameter Nw,
and ice water content (IWC), respectively. Chase et al. (2021)
also showed that their retrieval implemented on the GPM-DPR
measurements removes along track ray-to-ray instabilities found
in the current 2ADPRmethod (cf. Fig. 15 in Chase et al. 2021).

The primary goal of this paper is to evaluate the new re-
trieval method developed for GPM-DPR by Chase et al.
(2021) directly against CPR’s 2C-SNOW-PROFILE retrieval.
Secondary goals of this paper are to quantify and discuss the
potential limitations of W-band single-frequency retrievals in
context of moderate to intense snowfall events as well as eval-
uate the operational 2ADPR snowfall retrieval against the
2C-SNOW-PROFILE. Although CPR’s 2C-SNOW-PROFILE
has shown generally good agreement with ground-based
sensors (e.g., Cao et al. 2014; Norin et al. 2015; Chen et al.

2016; Souverijns et al. 2018; Matrosov 2019) there have been
indications that the 2C-SNOW-PROFILE retrieval is low bi-
ased relative to other snow accumulation measurements. For
example, Ryan et al. (2020) showed that 2C-SNOW-PRO-
FILE is low relative to ice core estimates over Greenland. Fur-
ther, Cao et al. (2014) and Mróz et al. (2021) showed for
moderate to intense snowfall rates (.1 mm h21)
2C-SNOW-PROFILE underestimates the S-band radar snow-
fall. The rest of this paper is structured as follows: section 2
discusses the retrieval methods, the coincident dataset be-
tween GPM-DPR and CPR, the quality control methods used
to ensure a consistent comparison of GPM-DPR and CPR,
and information on the field campaign datasets used. Section 3
contains the results, starting with the statistical comparison be-
tween snowfall products on the coincident dataset, and then dis-
cussing the snowfall product comparison in context of two cases
studies from NASA field campaigns. Section 4 summarizes the
main results, conclusions, and future directions of research.

2. Methods

a. Retrieval methods

2C-SNOW-PROFILE (2CSP), uses optimal estimation
(Rodgers 2000) to retrieve profiles of the two parameters of
the exponential particle size distribution based on a state vec-
tor containing the gaseous attenuation corrected W-band re-
flectivity profile supplemented with coincident environmental
conditions from ECMWF High-Resolution Forecast simula-
tions and a priori characteristics of snow (Wood and L’Ecuyer
2018, 2021). From the two parameters of the size distribution
and a few assumptions, snowfall properties such as IWC and
R can be calculated. For the 2CSP retrieval, the terminal fall
velocity relation used is pressure adjusted, while the 2ADPR
(Seto et al. 2013) and the Chase et al. (2021) retrieval using
the GPM-DPR data assume that the retrieval is made with a
pressure of 1013 hPa. Since the fall speeds of particles, and
thus their precipitation rate, is proportional to air pressure
(i.e., more air pressure, more drag, lower precipitation rate),
the 2CSP retrieval is converted to a retrieval that is assumed
to be at 1013 hPa. To convert the 2CSP retrieval, a scale factor
is applied to the 2CSP product using the following relation
(Brandes et al. 2008):

Rmsl 5 Ri

Pi

1013 hPa

( )0:5
, (1)

where Rmsl is the liquid equivalent precipitation rate at mean
sea level (1013 hPa), Ri is the precipitation rate at the re-
trieval level, and Pi is the pressure at the retrieval level.
For the rest of the analysis in this paper, the Rmsl is compared
between all retrievals (herein written as R).

The latest version for the GPM-DPR retrieval, version 6
(Iguchi et al. 2018), uses a prescribed relation between R and
Dm to simultaneously retrieve R andDm for a given measured
radar reflectivity factor Ze. The retrieval is done iteratively,
varying an adjustment parameter � in the column to minimize
the error between the retrieved and estimated path integrated

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 611258

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/29/22 06:55 PM UTC



attenuation and the measured Ka-band Ze. More details are
found in the algorithm theoretical basis document (Iguchi
et al. 2018). Overall, the algorithm shows good performance
on the retrieval of R andDm in rain when compared with data
collected during NASA’s Ground Validation field campaigns,
satisfying GPM’s level-1 mission requirement of an error
of less than 50% and 0.5 mm for R and Dm, respectively
(Petersen et al. 2020; Gatlin et al. 2020). Note that the R–Dm

retrieval framework is used in all GPM-DPR gates, regardless
of hydrometeor phase despite being derived from surface
rainfall measurements. Version 6 of the 2ADPR algorithm
does make adjustments to some of the assumptions in the
scattering tables and the underlying particle size distribution
when being used for solid-phase designated radar gates, but
the underlying R–Dm relation is exactly the same. The use of
the R–Dm parameterization has contributed to the low bias
within snowfall retrievals (e.g., Skofronick-Jackson et al.
2019; Chase et al. 2020), but the 2ADPR retrieval for snowfall
is included for comparison in section 3a.

As an alternative to the R–Dm retrieval in snowfall using
GPM-DPR, a dual-frequency radar neural network retrieval
of snowfall parameters formulated by Chase et al. (2021) is
also evaluated. The retrieval was built using state-of-the-art
particle scattering models (e.g., discrete dipole approxima-
tion; Yurkin and Hoekstra 2011) and measured particle size
distributions from multiple NASA field campaigns (e.g.,
Jensen et al. 2016; Skofronick-Jackson et al. 2017; Houze et al.
2017) to inform the weights and biases of a neural network.
The Chase et al. (2021) retrieval, neural network (NN), is per-
formed on a gate-by-gate basis and takes inputs of the mea-
sured Ze at Ku band, measured dual-frequency ratio between
Ku and Ka band, and the temperature of the radar gate. The
retrieval passes the inputs through trained weights and biases,
and outputs estimates of Dm and Nw. From Dm and Nw IWC
can be calculated following Delanoë et al. (2014):

IWC 5
NwD

4
mrlp

44

( )
, (2)

where rl is the density of liquid water.
Since the goal of this study is to compare R, some as-

sumptions have to be made to convert the IWC to R within
the NN retrieval. To do so, a linear regression between
log(R) and log(IWC) is fit using ground-based precipitation
imaging package (PIP) measurements acquired at the Uni-
versity of Helsinki Hyytiälä Forestry Field Station in Fin-
land (von Lerber et al. 2017; Chase et al. 2020) and the
National Weather Service office in Marquette, Michigan
(Pettersen et al. 2020). The PIP data are used because the
mass of particles is retrieved from their respective observed
fall velocities (cf. von Lerber et al. 2017), thus giving a more
constrained estimate of R and IWC from measured particle
size distributions. The fit to the empirical relation is given by

R 5 3:64(IWC)1:06 (3)

and is shown graphically in Fig. 1. The units for the coefficient
of 3.64 in Eq. (3) are (m3 g21)1.06 mm h21. The total PIP

dataset includes about 600 h of snowfall measurements, com-
posed of 5-min individual observations. The mean estimated
error (i.e., regression R 2 observed R) from using a linear re-
gression to calculate R from IWC is 0.04 mm h21. While an
empirical relationship, such as the one presented in Eq. (3),
can introduce a bias in the NN retrieval, there is added confi-
dence in the fact that deriving the relationship with the two sites
independently only changes the fitted parameters by less than
10%. Furthermore, since GPM-DPR can only observe echoes
with Ka. 18 dBZ, echoes likely contain precipitation sized par-
ticles like the ones observed by the surfaced based probes.

b. Coincident dataset and quality control

The primary dataset used here is the coincident CloudSat–
GPM archive (2B.CSATGPM; Turk 2016; Turk et al. 2021).
This dataset consists of all GPM overpasses from April 2014
to August 2016 that have a CloudSat track passing through
the GPM swath separated by less than 15 min in time. While
any time offset can lead to errors, more strict time difference
requirements (i.e., 5 min) did not change the general conclu-
sions of this paper. The closest GPM-DPR footprint to each
CloudSat along track footprint is deemed coincident and used
for the comparison. These data have already been used suc-
cessfully in informing the current status of the operational
GPM-DPR retrieval of snowfall (Casella et al. 2017), deter-
mining the effectiveness of high-frequency radiometers for
snowfall retrievals (Panegrossi et al. 2017, 2018; Yin and Liu

FIG. 1. Measured correspondence between IWC and liquid
equivalent precipitation rate R from the datasets collected at the
University of Helsinki Hyytiälä Forestry Field Station Finland
(BAECC; von Lerber et al. 2017) and Marquette, Michigan
(MQT; Pettersen et al. 2020). Dots indicate individual observations
(5-min temporal averaging); shading shows the density of points in
each bin. The black line is the power-law fit from Eq. (3), and Ereg

is the mean error estimated from using the regression to calculate
R from IWC.
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2019), training of passive microwave radiometers to derive
snowfall properties of the column (Rysman et al. 2018) and
near-surface (Rysman et al. 2019), and informing retrievals of
ice water path within convective systems from passive micro-
wave radiometers (Rysman et al. 2021).

Since the original goal of Turk (2016) was to include both
coincidences of CloudSat with GPM-DPR, and coincidences
with the much wider swath radiometer on GPM (GMI;
Draper et al. 2015), there are many files with little to no mete-
orological signal from GPM-DPR. To remove files containing
no valid GPM-DPR snowfall retrievals, a list of files was iden-
tified manually to contain GPM-DPR signal. Then from the
shorter list of coincident orbits, each file was quality con-
trolled to be used for analysis in section 3 as discussed below.

First, echoes determined as convective by the GPM-DPR
retrieval (i.e., no bright band present) are removed. Convec-
tive profiles are removed because the NN retrieval is not ex-
pected to perform well in convection given the likely presence
of large amounts of supercooled liquid water and riming,
which are not included in the formulation of the NN retrieval
(cf. Chase et al. 2021). Then surface echoes are removed by
using the included surface elevation with a buffer of 1 km for
the CloudSat dataset and the GPM-DPR supplied lowest clut-
ter free bin parameter for the GPM-DPR dataset. Subse-
quently, the noise above echo top is eliminated by using the
minimum sensitivity thresholds for each radar, which are225,
18, and 12 dBZ for W, Ka, and Ku bands, respectively. The
result from the aforementioned steps is shown in Figs. 2a and

2b. To isolate solid-phase echoes, the melting layer was re-
moved by removing gates with temperatures.22.58C, where
the temperature is obtained by the closest ECMWF auxiliary
(ECMWF-AUX) profile included within the matched dataset.
The threshold of22.58C was chosen to be conservative and to
assure most of the melting layer would be excluded from the
analysis. The result of removing liquid-phase echoes from the
retrieved R are found in Figs. 2c and 2d. Afterward, the 2CSP
retrieval is then constrained to where the NN retrieval was
successfully performed (i.e., where there is Ku and Ka signal).
Profiles where at least three valid gates (i.e., meet the afore-
mentioned conditions) within the ice layer are kept for the
analysis and all others are removed.

Since there is no “ground truth” of retrieved snowfall
within the Turk (2016) dataset, one way to evaluate retrieval
performance is to compare the liquid equivalent mass flux
(i.e., R) right above the melting layer with the mass flux right
below the melting layer. Heymsfield et al. (2018) used this
method, suggesting that on average the mass flux above and
below the melting layer should be quasi-conserved. While this
may not be directly intuitive, given the fall velocity of melted
particles is much faster than their solid-phase counterparts,
the number concentration of particles scales inversely with
the fall velocity, thus the mass flux should be quasi-conserved.
Additional evidence for the quasi-balance of R across the
melting layer is shown in a recent case study by Mróz et al.
(2020) using triple-frequency Doppler spectra measurements.
It was shown that the mass flux just above the melting layer is

FIG. 2. An example of a coincident sample of a precipitating system located at 578N, 1458E between 1253 and 1300 UTC 28 Jul 2016.
All x axes are the along-track direction of CloudSat. (a) CloudSatW-band attenuated Ze (dBZ) with the surface echo clutter and echo-top
noise removed; (b) GPM-DPR Ka-band attenuated Ze (dBZ) matched along the CloudSat track, with the surface echo clutter and echo-
top noise removed. (c) 2C-SNOW-PROFILE retrieved snowfall rate (mm h21). Gates with temperatures $22.58C and inferred mixed-
phase gates (bright band) were removed. (d) Chase et al. (2021) retrieved snowfall rate (mm h21). Melting layer, rain echoes, and gates
below 18 dBZ (minimum sensitivity) were removed. (e) As in (c), but now only where there is Chase et al. (2021) retrieval. The additional
red colors are the default version-6 2ADPR rainfall retrieval. (f) As in (d), but with the added rainfall retrieval in red from the default
version-6 2ADPR rainfall retrieval.
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well preserved just below the melting layer outside of regions
of intense aggregation (e.g., where the dual-frequency ratio at
X-Ka is greater than 10 dB). Last, since the retrieval of rain
from radars is generally more constrained (e.g., raindrops are
quasi-spherical; constant density) the rainfall retrieval, sup-
plied from version 6 of the 2ADPR algorithm, just below the
melting layer is used as a benchmark for the snowfall retriev-
als just above the melting layer. Thus, as a final constraint on
the dataset, a rain echo with at least three gates had to be pre-
sent for the profile to be used in the analysis. The final result
of all the quality control is found in Figs. 2e and 2f. A separate
dataset of near-surface snowfall events (i.e., 08C isotherm be-
low the clutter echo) is also analyzed in the same manner, but
the final constraint of the rain echo requirement is removed.
While there is no baseline estimate to suggest which snowfall
retrieval is performing better, the near-surface snowfall analy-
sis is included to assess if trends from the snow over rainfall
persist to snow only cases. After quality control there are a to-
tal of 3657 profiles of coincident retrievals of snowfall above
rain and 1322 profiles of coincident retrievals of snowfall near
the surface. (A map of the location of all the profiles can be
found in Fig. A1.)

c. Field campaign data

To supply discussion of the differences between 2CSP and
the NN retrieval, two case studies using observations are
shown. Specifically, a flight leg obtained as part of the Inves-
tigation of Microphysics and Precipitation for Atlantic Coast-
Threatening Snowstorms (IMPACTS; McMurdie et al. 2022)
and a flight leg from Olympic Mountains Experiment
(OLYMPEX; Houze et al. 2017) are used. During both of
the field campaigns, coordinated flights between a higher-
altitude aircraft carrying radars and a lower-altitude aircraft
carrying in situ probes were frequently conducted in order to
obtain coincident measurements of remotely sensed varia-
bles, like Ze, and in situ measurements. The specific radars
used in this analysis are the Airborne Precipitation Radar
(Sadowy et al. 2003), version 3 (APR3; Durden et al. 2019);
the Cloud Radar System (CRS; Li et al. 2004); the High Al-
titude Imaging Wind and Rain Profiler (HIWRAP; Li et al.
2016); and the ER-2 Doppler Radar (EXRAD; Heymsfield
et al. 1996).

The APR3 is a triple-frequency scanning radar measuring
collocated Ze at Ku (13.4 GHz), Ka (35.6 GHz), and W band
(94 GHz), which was flown on NASA’s DC-8 during the
OLYMPEX field campaign. The APR3 measurements are es-
timated to have a calibration uncertainty of 1–1.5 dB after be-
ing calibrated to the surface echo of the ocean surface in clear
conditions and comparisons of the dual-frequency ratio mea-
sured in low-Ze regions of cloud top (Tanelli et al. 2006). The
other three radars, CRS, HIWRAP, and EXRAD, are all
nadir-pointing Doppler radars that measure at W (94 GHz),
Ka (35.6 GHz), Ku (13.9 GHz), and X (9.6 GHz) bands. The
CRS, HIWRAP, and EXRAD were flown together aboard
the ER-2 aircraft for IMPACTS. Calibration of the radars
was performed in a similar way as the APR3 and are esti-
mated to have a calibration uncertainty of 1 dB. All measured

frequencies of Ze are corrected for gaseous attenuation of O2

and H2O using a dropsonde for OLYMPEX, a balloonborne
radiosonde for IMPACTS, and the 2013 report from the Ra-
diocommunication Sector of International Telecommunica-
tion Union 2013 implemented in pyLayers (https://github.
com/pylayers/pylayers). Mean two-way attenuation correction
for gaseous extinction is 0.2, 0.4, and 0.6 dB for Ku, Ka, and
W band, respectively.

Simultaneous cloud in situ data were collected during both
field campaigns. For OLYMPEX, in situ observations were
collected on board the University of North Dakota (UND)
Cessna Citation aircraft (Delene et al. 2019), while for
IMPACTS they were collected on NASA’s P3 aircraft. Be-
yond the common state parameters measured (e.g., pressure,
temperature, relative humidity), the in situ aircraft carried the
same optical array probes (OAP) to measure the particle
size distribution within clouds. Specifically, they had a two-
dimensional stereo (2DS) and a high-volume precipitation
spectrometer, version 3 (HVPS3). The OAP data are quality
controlled using the University of Illinois–University of Okla-
homa Optical array Probe Software (UIOOPS; McFarquhar
et al. 2017; Jackson et al. 2014) to correct images that are
hollow, remove shattered artifacts and reconstruct particles
that have dimensions larger than the OAP diode array. The
2DS and HVPS data are combined to give size distributions
between 175 mm and 3 cm, with a transition between the
probes at 1 mm. Particles smaller than 175 mm are not in-
cluded because of a small and uncertain depth of field, and
such small particles do not contribute significantly to calcu-
lated IWC.

Unfortunately, for the case from IMPACTS there was not
good collocation between the radar carrying aircraft and the
in situ aircraft. Thus, to provide additional support for the hy-
potheses discussed in this paper the following three additional
datasets are included in the discussion in section 3b. The first
one is the Multi-Radar Multi-Sensor (MRMS) radar only pre-
cipitation rate retrieval (Zhang et al. 2011). While the MRMS
radar only precipitation rate is a static power-law between Ze

and R (i.e., a single Z–R relationship), it has been used before
in evaluating various snowfall retrievals from space in the
United States (Cao et al. 2014; Mróz et al. 2021). The second
dataset is surfaced-based measurements of R from three nearby
stations. One of the three stations is a standard Automated Sur-
face/Weather Observing Systems (ASOS) station located at the
Syracuse, New York, airport. The other two stations are a part
of the New York State Mesonet (Brotzge et al. 2020).

3. Results and discussion

a. Coincident statistics between GPM-DPR and CPR

Statistics of measured and retrieved variables from all coin-
cident measurements between CPR and GPM-DPR after
quality control are shown in Fig. 3. For surface rainfall events,
the median profile of measured Ze for GPM-DPR generally
increases with temperature, from 19.7 and 21.6 dBZ to 21.5
and 25.6 dBZ for Ka and Ku band, respectively (red and blue
lines; Fig. 3a). Meanwhile, the CPR median measured Ze
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decreases from 13.8 to 11.4 dBZ (yellow line; Fig. 3a). As a
first-order approximation, the retrieval of R just below the
melting layer is compared with the retrieval of R just above
the melting layer. Heymsfield et al. (2018) and Mróz et al.
(2020) suggested that R should be approximately conserved
through the melting layer. Thus, if the assumptions of mass
flux conservation are true on average, which implies relative
humidity with respect to water (RH) is near 100%, then R is
approximately conserved. Note that Heymsfield et al. (2018)
show that a modest decrease in RH (95%) can result in a non-
negligible reduction in R across the melting layer (23%; cf.
Fig. 1 in Heymsfield et al. 2018), but if the RH is indeed less
than 100% on average for the profiles studied here, then the
rain retrieved R would be a lower bound to the snowfall re-
trieved R. In Fig. 3c the NN retrieval is closest to the rainfall
retrieval, with a median value of 1.9 mm h21 and a percent
difference from the rain retrieval of 12%. The next closest to
the rain retrieval is the 2ADPR snowfall retrieval and then
2CSP, with median values of 1.01 and 0.95 mm h21 and per-
cent differences with respect to the rain retrieval of 248%
and 251%, respectively. Considering the profiles over all
temperatures, the smallest values of R in the snow layer are
retrieved from 2ADPR, followed by the 2CSP and then the
NN retrieval. The slopes of retrieved R for 2ADPR and 2CSP
generally follow the shapes of the reflectivity that make up
their retrieval (Fig. 3a; while the NN retrieval is effectively
constant for all temperatures, but does show an increase from
1.74 mm h21 at2108C to 1.9 mm h21 at22.58C. Events where
there is no rain retrieval available to be used as a reference
(i.e., 08C in or at lower altitudes than the ground clutter) are
shown in Figs. 3b and 3d. The pattern overall is the same as
the profiles with a coincident rain retrieval (Figs. 3a,c). The
smallest retrieved R is produced by the 2ADPR algorithm fol-
lowed by the 2CSP and the NN retrieval, respectively.

While the comparison with the GPM-DPR rainfall retrieval
was informative for gates near 08C, unfortunately there are no
reference data with which to compare the three snowfall re-
trievals at temperatures lower than 22.58C. Thus, it is impos-
sible to provide an objective assessment of which retrieval is
performing best at lower temperatures. Although, given there
are measurements of reflectivity at Ku, Ka, and W bands,
some hypotheses can be postulated. The general increase of
Ze at Ku and Ka bands, paired with a general decrease of
W band, suggests a few possible scenarios that could result in
the decrease of Ze and subsequently a decrease of 2CSP R
from2158 to22.58C:

1) the diminished Ze is due to attenuation and the 2CSP al-
gorithm does not adequately compensate for it,

2) the diminished Ze is due to non-Rayleigh scattering and
the actual scattering is inconsistent with 2CSP’s non-
Rayleigh scattering property assumptions, and/or

3) the diminished Ze is influenced by multiple scattering that
is inconsistent with 2CSP’s multiple-scattering treatment.

These three potential explanations are not mutually exclusive
nor are they an exhaustive list of everything that may be oc-
curring. Furthermore, all the listed processes could be affect-
ing the observed Ze and the 2CSP retrieval to some extent
even though the 2CSP algorithm does attempt to account for
these effects.

For scenario 1, the observed W-band Ze at temperatures of
2158C and warmer are large for CloudSat CPR observations,
exceeding 10 dBZ, but are diminished relative to the Ku- and
Ka-band Ze. This suggest large ice water contents that, for W
band, are likely to produce substantial attenuation. Although
the 2CSP retrieval algorithm is designed to compensate for
attenuation, two factors come into play. First, when the
observed Ze and associated attenuation become large, the

FIG. 3. Statistics of measured and retrieved variables for all coincident orbits within which precipitation was detected by GPM-DPR
Ka-band radar (see the appendix for a map of these locations). (a) Median profiles (line with symbols) of measured Ze from CloudSat
(dBZ; yellow), GPM-DPRKa band (red), and GPM-DPR Ku band (blue) for (a) surface rain events and (b) near-surface snowfall events.
The horizontal lines with caps are the locations of the 25th and 75th quantile. Medians and quantiles were calculated in linear units and
then converted to logarithmic units. (c) As in (a), but for median profiles (line with symbols) of the retrieved snowfall rate (mm h21; hexa-
gon symbols) adjusted to mean sea level pressure (1013 hPa) from 2CSP (yellow), NN (purple), and version 6 of 2ADPR (gray) for all
stratiform instances with snow measured above rain. Version 6 of the 2ADPR rainfall retrieval is in black with circles. (d) As in (c), but
for instances in which the 08C isotherm was found below the lowest clutter free gate (i.e., near-surface snow events).
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retrieval’s forward model becomes more uncertain. This
causes the retrieval to rely more on a priori assumptions
about particle size distributions. These a priori assumptions
may not be consistent with the observed conditions and lead
to an error in the retrieved R. Under these conditions, the re-
trieved R has large uncertainty. Second, the conditions of
2158C and warmer are likely to contain supercooled water
and rimed particles (Kneifel and Moisseev 2020), which may
lead to large particle densities and stronger attenuation at W
band relative to the aggregate-like particle model used in the
2CSP retrieval. Considering only the attenuation effects, if
the 2CSP particle models produce too little attenuation, the
retrieval algorithm’s estimate of the unattenuated Ze will be
too small and will lead to R being underestimated.

For scenario 2, larger snow particles observed at shorter
wavelengths (e.g., Ka and W band) have non-Rayleigh scat-
tering properties that vary depending on the assumed particle
type (e.g., Kneifel et al. 2011; Tyynelä et al. 2011; Leinonen
and Szyrmer 2015). The diminished Ze observed by CloudSat
(Figs. 3a,b) coincides with warmer temperatures, which are
more likely to contain larger particles (i.e., aggregates
Hobbs et al. 1974), and there is an increased likelihood of
non-Rayleigh scattering than there is with colder tempera-
tures. Since there is considerable uncertainty in the back-
scatter cross sections for these non-Rayleigh scattering
particles (e.g., dendrite vs bullet rosette; Wood et al. 2015),
the 2CSP’s assumed particle type could be misestimating
the backscattering cross-section. If the cross sections are
overestimated, this in turn would lead toR being underestimated.
Given that the scattering regime (Rayleigh vs non-Rayleigh) of a
particle is mainly determined by its size relative to the wavelength
of the radar, the W-band observations of CloudSat would be
more affected by non-Rayleigh scattering than would the Ku- or
Ka-band observations of the DPR.

For scenario 3, for the conditions being discussed (large
particles and large water contents), multiple scattering is
important for CloudSat. Matrosov and Battaglia (2009) found
that multiple scattering in heavier snowfall events increases the
observed Ze and partially offsets the effects of attenuation.
They show that on average the amount of total extinction (the
combined effects of attenuation and multiple scattering) is a
net reduction of 1–2 dB in the observed reflectivity. For strati-
form precipitation the 2CSP retrieval similarly assumes that
multiple scattering partially offsets the amount of attenuation
but treats this as a significant forward-model uncertainty
(Wood and L’Ecuyer 2018). Matrosov and Battaglia (2009)
used spheroidal particles and the T-matrix approach to simu-
late the snow particle scattering properties, and spheroidal par-
ticles have been shown to be less accurate models when
compared with more physically realistic shapes modeled using
the discrete dipole approximation (Tyynelä et al. 2011; Kneifel
et al. 2011). The impacts that more accurate particle models
would have on the balance between attenuation and multiple
scattering are not known. If the 2CSP retrieval overestimates
the compensating effect of multiple scattering, the result would
be an underestimate of R. To fully assess the impacts of multi-
ple scattering and attenuation, new Monte Carlo simulations
[i.e., like the ones done in Matrosov and Battaglia (2009)] with

more realistic particle shapes and rime fraction are required,
which is beyond the scope of this paper.

b. Case studies

In this section, two case studies from NASA field cam-
paigns assist in providing additional discussion on scenarios
where W-band radar shows decreasing Ze while Ku and Ka
bands show increasing Ze at larger temperatures. Each case
study was specifically chosen to exemplify potential analog
samples from Fig. 3, but with much higher resolution and bet-
ter sensitivity radar systems. Furthermore, both case studies
provide some external in situ observations as a reference for
the different snowfall retrievals.

1) IMPACTS: 1508 UTC 7 FEBRUARY 2020

The first case study examined is from IMPACTS. This case
is analogous to the profiles measured in Figs. 3b and 3d (i.e.,
surface snowfall events). On 7 February 2020, a deepening
midlatitude cyclone was moving eastward across Pennsylvania,
producing a large precipitation shield over central New York
(Fig. 4). Snowfall accumulation at the surface for this event ex-
ceeded 233 mm (liquid equivalent 35 mm) at Syracuse. The
IMPACTS field campaign targeted the north side of the
cyclone, where they flew a racetrack pattern from Syracuse
to Albany, New York, and back. Data from one of the three
coincident flight legs between both aircraft are shown in
Fig. 5.

The cross sections of measured Ze at W band (Fig. 5a) and
Ku band (Fig. 5b) show different perspectives of the same cy-
clone. Median W-band Ze grows to maximum 16.9 dBZ near
4 km and then reduces to 7.8 dBZ at 0.5 km (yellow; Fig. 5e).
Meanwhile, X-, Ku-, and Ka-band reflectivity are at a maxi-
mum near 1.5 km with values of 29.5, 28.7, and 23.8 dBZ, re-
spectively (black, blue, and red lines; Fig. 5e). Retrieved R
from an optimal estimation retrieval using the exact assump-
tions as the 2CSP retrieval is shown in Fig. 5c, while the NN
retrieved R is shown in Fig. 5d. As expected, both R retrievals
generally follow the Ze used within each respective retrieval.
The two separate retrievals are relatively close in magnitude
from 8 to 6 km, but then deviate from 6 km toward the sur-
face. The 2CSP-like retrieval shows a peak in median R near
5 km with a value of 1.88 mm h21, then decreases to a value
of 1.5 mm h21 at 4 km (yellow line; Fig. 5f), and then in-
creases to about 2 mm h21 at 0.5 km. Meanwhile the NN re-
trieved R increases with decreasing altitude, peaks around
2.5 km with a value of 2.93 mm h21 (purple line; Fig. 5f) and
then reduces to 2.81 mm h21 a 0.5 km. Unfortunately, during
this cross section the in situ aircraft was turning into the ER-2
flight track after the ER-2 already sampled the region. Thus,
the in situ data are not matched well and could not be used
for evaluation of the retrievals.

As an alternative evaluation method, the MRMS-retrieved
R and the measured R from three surfaced based gauges
nearby the flight track are analyzed in Figs. 5f and 6. The me-
dian MRMS-retrieved R over the distance of the flight track is
2.8 mm h21, which is effectively the same as the NN retrieval.
Meanwhile the minimum measured MRMS-retrieved R along
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the flight track is 2.0 mm h21 (black circle; Fig. 5f), which is
closest to the 2CSP median retrieved value. The surface-based
gauges at the time of the radar overpass (1509 UTC) show R
ranging from 1.5 mm h21 at Syracuse to 5.16 mm h21 mea-
sured at Westmoreland, New York. Since tipping-bucket
gauges (Syracuse is a tipping-bucket gauge) can have issues
with measuring snowfall rates (e.g., Rasmussen et al. 2012),
there is more confidence with the Fayetteville (New York)
and Westmoreland stations, which are Pluvio2 weighing

bucket gauges in a fenced enclosure (Brotzge et al. 2020).
Thus, all radar-retrieved R are low biased at the time of the
flight relative to Fayetteville, with percent differences of
127%, 63%, and 62% for the 2CSP, MRMS, and NN retrieval,
respectively.

While the aforementioned analysis is just one case study,
given the results of the statistical comparison of section 3a
and this section in combination, there is empirical support
showing that the 2CSP retrieval of R could be low biased in

FIG. 5. A case study from the IMPACTS field campaign from 1508:25 to 1510:50 UTC 7 Feb 2020. (a) Nadir W-band and (b) Ku-band
Ze (dBZ) corrected for gaseous attenuation of O2 and H2O. (c) Retrieval of R from the W-band-only CloudSat-like retrieval (mm h21).
(d) Calculation of R from the NN retrieval of Dm and Nw (mm h21). (e) Median profiles of X (black), Ku (blue), Ka (red), and W band
(yellow) along the cross section. The tick labels on the right are approximate temperatures for each height inferred from radiosonde meas-
urements. (f) As in (e), but now showing the median R from the CloudSat-like retrieval (2CSP; yellow) and the NN retrieval (purple).
The error bars on the 2CSP median are the median uncertainty estimated from the optimal estimation retrieval. The black boxplot located
at 0.5 km is the 0th, 10th, 25th, 50th, 75th, 90th, and 100th percentile of MRMS-retrieved R along the flight track.

FIG. 4. Map and sounding from a case study from the IMPACTS field campaign from 1508:25 to 1510:50 UTC 7
Feb 2020. (a) The radar scan is from the lowest elevation (0.58) from the KTYX NEXRAD radar (circle) at 1507
UTC. The black line is the ground track of the airborne radars. The triangle is where a ground-based radiosonde was
launched at 1414 UTC. (b) Skew T diagram of the radiosonde. Wind barbs are in knots (1 kt ≈ 0.5 m s21).
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moderate to intense (Ka . 18 dBZ) snowfall events. This
case study also shows that the NN retrieval and the retrieval
from MRMS could also be low biased relative to surface-
based gauges. Future field campaigns, such as IMPACTS year
2–3, should aim to collect more cases to help to characterize
these events by designing flight tracks to coincide directly
with surface-based measurements of snowfall and have better
collocation with an in situ aircraft.

2) OLYMPEX: 0646 UTC 18 DECEMBER 2015

The second case study examined is from OLYMPEX. This
case is analogous to the profiles measured in Figs. 3a and 3c
(i.e., surface rainfall events). On 18 December 2015, an oc-
cluded front was moving eastward from the Pacific Ocean to-
ward the Olympic Peninsula in Washington State forcing

widespread stratiform precipitation (Fig. 7). The OLYMPEX
field campaign conducted three coincident flights between the
NASA’s DC-8 and the UND Citation over the same east–
west track. One of the coincident flights from over the ocean
is shown in Fig. 8.

As opposed to the previous case in which surface snowfall
was observed, Fig. 8b shows a clear melting level (i.e., bright
band) located at 1.6 km that highlights the phase transition
from snow to rain. Thus, this case provides a potential exam-
ple of the cases shown in Figs. 3a and 3c and closely resembles
the structure in Fig. 2. As in the previous case, the W-band Ze

(Fig. 8a) and Ku-band Ze (Fig. 8b) show different vertical var-
iations for the same precipitation. W-band Ze increases to a
maximum at 4.1 km of 12.7 dBZ and then fluctuates down
and back up to 12.7 dBZ at 2.9 km. From 2.9 km, the W-band
Ze decreases to 9.1 dBZ at 1.9 km (Fig. 8e). The other

FIG. 6. Additional snowfall measurements for 7 Feb 2020. (a) Mean MRMS-retrieved precipitation rate from 1506 to 1508 UTC for the
same location as Fig. 4a. Letters S, F, and W correspond to the named surface stations Syracuse, Fayetteville, and Westmoreland, respec-
tively. The black solid line is the flight track in Fig. 5, and the dashed black-outlined rectangle is the area over which the MRMS data are
tabulated for the statistics in (b). (b) Time series of the surfaced based gauges in (a). The left y axis corresponds to the lines, and the right
axis corresponds to the filled curves. The data for Syracuse, Fayetteville, and Westmoreland are in black, blue, and red, respectively. The
median retrieved value from Fig. 5f is also shown at 1509 UTC for 2CSP (yellow triangle), the NN (purple square), and MRMS (black
plus sign).

FIG. 7. As in Fig. 4, but for a case study from the OLYMPEX field campaign from 0647:48 to 0649:17 UTC
18 Dec 2015. (a) The ground-based radar used is the KLGX radar from 0649 UTC. The black lines are the extent of
the APR3 swath, and the blue line is the in situ aircraft. The triangle is a dropsonde, dropped from the APR3 aircraft
at 0557 UTC. (b) Skew T diagram of the dropsonde data in (a).
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measured frequencies show increasing Ze throughout most of
the profile, reaching a maximum before melting of 20.9 and
27.4 dBZ for Ka and Ku band, respectively (Fig. 8e). Here,
IWC is compared because there are fewer assumptions in the
measurement of IWC from the in situ aircraft. The retrieved
IWC follows the general shape of the measured Ze used in the
respective retrievals (Figs. 8c,d). The 2CSP retrieval suggests
a maximum IWC of 0.15 g m23 at 4.1 km and then decreases
to 0.08 g m23 at 2 km (Fig. 8f). Meanwhile, the NN retrieved
IWC agrees with the 2CSP routine from 8 km to around 4 km
but then is approximately 6 times as large at 2 km, with the
maximum IWC of 0.51 g m23 (Fig. 8f).

For this case, the in situ aircraft was flying at an average al-
titude of 1.7 km (20.58C), right within the observed reduction
of W-band Ze. This location of reduced Ze at W band has
been termed the radar “dark” or “dim” band in the literature
(e.g., Sassen et al. 2005; Heymsfield et al. 2008; Kollias and
Albrecht 2005; Sassen et al. 2007). The IWC calculated from
the measured particle size distribution by assuming moder-
ately rimed aggregates from Leinonen and Szyrmer (2015)
(a 5 0.249 kg m2b; b 5 2.30 for the mass–dimension relation)
shows the best agreement with the measured Ku- and
Ka-band reflectivity (symbols with error bars; Fig. 8e) and
suggests median IWC values close to the NN retrieved IWC
of 0.51 g m23. Thus, it is expected that the NN retrieval is
more plausible given that the 2CSP retrieval of IWC is smaller
by a factor of 6 than the in situ data and that the in situ data
can reproduce the measured median Ze to within 2 dB.

Figure 9 shows the measured particle size distribution and
some particle images from the in situ aircraft. Large aggre-
gates with dimensions exceeding 1 cm are observed, with par-
ticles greater than 2 cm observed near the end of the flight.
Using the Cloud Droplet Probe and the Rosemount Icing

Detector, there is limited or no supercooled liquid water pre-
sent in the sampled layer (not shown). On average, larger
mean particle sizes results in larger Ze (cf. Fig. 4 in Kneifel
et al. 2011). Since Ku- and Ka-band Ze increase across this
layer, and melting is not detected by the in situ instruments
(e.g., temperature less than 08C, images are nonspherical, low
CDP measurements) mean particle size should be increasing.
Thus, the measured reduction in Ze at W band can only be
explained by non-Rayleigh scattering effects and/or attenuation.
Although there is no method to disentangle the attenuation and
non-Rayleigh effects, it is clear that the radar-measured Ze,
which is ultimately used in the retrievals, is low relative to the
PSD calculated Ze (yellow symbol and yellow line in Fig. 8e),
resulting in a smaller retrieved IWC at the level of in situ
observations.

4. Conclusions

With the advent of spaceborne radars, the global estimation
of precipitation and the quantification of the hydrologic cycle
has been enhanced. Both CPR and GPM-DPR provide
unique opportunities to study snowfall near the surface and
snow properties throughout the atmospheric column. For the
first time, a direct quantitative comparison of the 2C-SNOW-
PROFILE (2CSP; Wood and L’Ecuyer 2018, 2021), 2ADPR
(Iguchi et al. 2018), and a neural network retrieval (Chase
et al. 2021) on coincident measurements globally was con-
ducted. The main conclusions from the comparison of over
3500 precipitating profiles are as follows:

1) The neural network snowfall retrieval just above the melt-
ing layer from Chase et al. (2021) provided the best agree-
ment to the rain layer retrieved precipitation rate R from
2ADPR just below the melting layer.

FIG. 8. Similar to Fig. 5, but for a case study from the OLYMPEX field campaign from 0647:48 to 0649:17 UTC 18 Dec 2015 and now
the retrieved parameter from the radars is (c),(d),(f) ice water content. Furthermore, (e) and (f) now have symbols with caps that indicate
the 25th, 50th, and 75th percentiles calculated from the in situ measured PSD using Leinonen and Szyrmer (2015) backscatter cross
sections.
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2) CloudSat’s 2CSP retrieval showed decreasing R with tem-
peratures greater than 2158C, decreasing by about 35%
in magnitude from 2158 to 22.58C and underestimating
relative to the rain layer retrieved R from GPM-DPR.

3) GPM-DPR’s 2ADPR snowfall retrievals for most temper-
atures showed the smallest retrieved R in comparison
with the 2CSP and the NN retrieval.

It should be emphasized that the data that resulted in the
conclusions above are from profiles that have at least three
gates of 18 dBZ Ka-band Ze within the ice layer. Thus,
the profiles used in the analysis are likely in the upper tail of
the distribution of intensity for stratiform precipitation, but it
is expected that while these profiles are less frequent in terms
of total number, they likely have a disproportionate effect on
the total accumulation of precipitation. Initial investigations
have shown the GPM-DPR is not well suited for capturing
the entire distribution of snowfall accumulation (Casella et al.
2017; Skofronick-Jackson et al. 2019), but if the bias in the re-
trieved R from 2CSP reported in Fig. 3 also exists at lower
temperatures and occurs within a large fraction of snowfall
events within the CloudSat record, then there is opportunity
for GPM-DPR to assist in the quantification of the moderate
to intense snowfall events since the 2CSP retrieval is highly un-
certain and likely biased low. Furthermore, for the profiles used
in Fig. 3 some of the assumptions made in the 2CSP optimal esti-
mation retrieval, such as the particle model or the quasi-balance
between multiple scattering and attenuation, could be inappro-
priate and might be what is leading to the reduction in R from
2158 to 22.58C. Future work should investigate how including
new state-of-the-art particle scattering models (e.g., Kuo et al.
2016; Eriksson et al. 2018) impact the 2CSP retrieval and the

expected multiple scattering with CloudSat geometries within
moderate to intense snowfall events.

In addition to the results from the coincident GPM-CloudSat
dataset, two case studies from NASA field campaigns highlight
the apparent challenges of W band only retrievals of snowfall.
The main conclusion from the two case studies is as follows:
Coincident W-, Ka-, and Ku-band measurements suggest that
W-band-only retrievals of IWC and R, are nonnegligibly
affected by attenuation and non-Rayleigh scattering. While
the overall amount of attenuation might initially seem small,
2–3 dB, its effect on the 2CSP retrieval is clearly not negligible.
In both cases, the 2CSP retrieval peaks near the dendritic
growth zone (2158C) and then decreases toward greater tem-
peratures. The analysis of the multifrequency radar measure-
ments here further support the already documented notion
that multifrequency radar measurements improve snowfall
retrievals (e.g., Kneifel et al. 2011, 2015; Grecu et al. 2018;
Leinonen et al. 2018; Tridon et al. 2019; Battaglia et al.
2020). Thus, it is advantageous for any future planned
spaceborne missions, such as the planned international mis-
sion named the Atmospheric Observing System (AOS;
https://aos.gsfc.nasa.gov), to include a longer wavelength ra-
dar (e.g., a Ka- or Ku-band system) in tandem with the
W band in order to improve precipitation science and the
associated scientific outcomes. The added longer wavelength
will provide valuable insight to when there is appreciable atten-
uation/non-Rayleigh scattering at W band and hopefully inform
the retrieval to rely on the longer wavelength in said regions.

Additional future work should explore the CloudSat record
and consider the documented reduction in R with larger tem-
peratures from this paper. For example, many studies (Liu

FIG. 9. In situ observations from 18 Dec 2015. The in situ aircraft is located by the dashed line
in Fig. 8. (a) Measured N(D) with the same x scale as Fig. 8 (shading). The line with symbols is
the mass-weighted mean diameter assuming the same m–D from Leinonen and Szyrmer (2015)
that recreates the measured Ze in Fig. 8. Also shown are example particle images from both the
2DS (blue) and the HVPS (orange) from the (b) 8- and (c) 16-km locations on the x axis.
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2009; Kulie and Bennartz 2009; Palerme et al. 2014; Kulie et al.
2016; Palerme et al. 2017; Milani et al. 2018; Kulie and Milani
2018; Skofronick-Jackson et al. 2019; Cabaj et al. 2020; Edel
et al. 2020; Kulie et al. 2020) have adopted the near-surface
gate as the source of data to analyze when calculating the dis-
tribution of global snowfall accumulation and its properties.
Rather, the entire profile of measured Ze should be considered
in order to diagnose when unexpected reductions in W-band Ze

could be occurring, and thus the frequency and effect of these
attenuated profiles on the global snowfall accumulation could
be estimated. While stratiform profiles were mainly used in this
paper, shallow convective clouds that make up a nonnegligible
fraction of total snowfall over the ocean (Kulie et al. 2016) also
have considerable attenuation issues at W band (Battaglia and
Panegrossi 2020) and should be carefully considered as
well. Finally, other future work should update the analysis
presented here with the extended coincident dataset after
August 2016, when the required products from CloudSat
are available.
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APPENDIX

Map of Profile Locations

Figure A1 is a map of all of the profiles used in Fig. 3.
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